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Abstract

The interaction of multiple drugs could lead to se-
rious events, which causes injuries and huge med-
ical costs. Accurate prediction of drug-drug inter-
action (DDI) events can help clinicians make ef-
fective decisions and establish appropriate therapy
programs. Recently, many Al-based techniques
have been proposed for predicting DDI associated
events. However, most existing methods pay less
attention to the potential correlations between DDI
events and other multimodal data such as targets
and enzymes. To address this problem, we pro-
pose a Multimodal Deep Neural Network (MDNN)
for DDI events prediction. In MDNN, we design
a two-pathway framework including drug knowl-
edge graph (DKG) based pathway and heteroge-
neous feature (HF) based pathway to obtain drug
multimodal representations. Finally, a multimodal
fusion neural layer is designed to explore the com-
plementary among the drug multimodal represen-
tations. We conduct extensive experiments on real-
world dataset. The results show that MDNN can
accurately predict DDI events and outperform the
state-of-the-art models.

1 Introduction

With the rapid growth of the number of drug types, it is essen-
tial to manage drug safety when multiple drugs are adopted in
the treatment of a disease. Drug-Drug Interactions (DDI) of-
ten occur in cases of simultaneous administration of multiple
drugs, which may result in adverse drug reactions that cause
injuries and huge medical costs [Vilar et al., 2014]. However,
DDI can lead to different biological consequences and events.
For example, drug Itraconazole and drug Abemaciclib inter-
action together cause an event that the risk to increase due
to the severity of the adverse effects, as shown in Figure 1.
Therefore, accurate prediction of DDI events becomes a clin-
ically important task which could help clinicians make ef-
fective decisions and establish appropriate therapy programs.
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Figure 1: An example of DDI events. When drug Abemaciclib and
drug Dabrafenib interaction together, an DDI event will be occurred
and cause the decrease of body’s serum concentration. However, it
will raise the risk or severity of adverse effects when mixing drug
Abemaciclib and drug Itraconazole.

The correct use of multiple drugs can minimize the medical
risks while maximizing the synergy benefits of drugs.

There have been a number of Al-based models proposed
for DDI events prediction, including analyzing chemical
structure similarity using graph neural networks [Huang et
al., 2020], implementing multi-task learning on DDI type
prediction [Jin er al., 2017; Zitnik et al., 2018; Ryu et al.,
2018], modeling semi-supervised learning to mine useful in-
formation for DDI prediction in both labeled and unlabeled
drug data [Chu er al., 20191, and exploiting knowledge graph
summarization for multi-typed DDI pharmacological effect
prediction [Yu et al., 2021]. There have been also some ef-
forts on predicting DDI using multiple data sources, such
as the similarity features to obtain drug features for DDI
events prediction task [Ma er al., 2018; Zhang et al., 2015;
Deng er al., 2020]. However, most existing methods pay less
attention to the potential correlations between DDI events and
other multimodal data such as targets and enzymes. More-
over, cross-modality complementarity of multimodal data has
not been taken into consideration.

To tackle the above limitations, this work aims to effec-
tively assist the joint representation learning of multimodal
data related to DDI events. We propose a Multimodal Deep
Neural Network (MDNN) framework for DDI events predic-
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tion. In MDNN, we design a two-pathway framework includ-
ing drug knowledge graph (DKG) based pathway and het-
erogeneous feature (HF) based pathway to obtain drug mul-
timodal representations. Then, inspired by graph neural net-
works that try to learn from structure information [Hamilton
etal.,2017; Wang et al., 2019a; Cui et al., 2020], we propose
the GNN layer to learn drug representations by extracting
both structural information and semantic relations from the
DKG. Finally, a multimodal fusion neural layer is designed to
predict DDI events by exploring the complementary between
the drug multimodal representations. Our contributions are
summarized as follows:

e We propose a new multimodal deep neural network with
a two-pathway framework including the drug knowledge
graph pathway and the heterogeneous feature pathway.
MDNN can predict DDI events by exploiting the associ-
ations between DDI events and multimodal representa-
tions.

e The MDNN framework mainly has the following mer-
its: (a) MDNN learns the representations from mul-
timodal data and mines the inter-modality similarities
from multiple sources. (b) MDNN exploits the topo-
logical structure information and semantic relations with
drug knowledge graph.

e We conduct extensive experiments on a real-world
dataset to demonstrate the effectiveness of our model
compared with classic and the state-of-the-art methods.

2 Related Work

DDI events prediction is a fundamental task with applications
in many areas such as clinical and pharmaceutical decisions.
The research works which aim to improve DDI prediction can
be summarized in two directions: integrating multiple drug
features and applying deep learning techniques.

Many efforts have been taken on calculating the similari-
ties by integrating multiple data sources and predicting DDI
based on the fused similarity. For example, the works [Vilar
et al., 2014; Abdelaziz et al., 2017] integrate multiple drug
features to calculate the similarities among drugs , and then
predict DDI accurately based on the fused similarity. [Zhang
et al., 2015] proposes an integrative framework to fuse the
similarities of drug features with proper weights and predict
DDI. [Ma et al., 2018] proposes to learn accurate and inter-
pretable similarity measurement from multiple types of drug
features for DDI prediction. In addition, [Deng ef al., 2020]
proposes a framework DDIMDL that combines diverse drug
features to build a model for predicting DDI events. How-
ever, they are limited in obtaining the rich features of drugs
in structural information and semantic relations.

Recently, there has been growing interests in applying Al
techniques for DDI prediction such as deep learning and
graph neural networks. Different from drug similarity ob-
tained from multiple sources, a deep learning framework
named DeepDDI [Ryu et al., 2018] is proposed to use molec-
ular structures of drugs as inputs for predicting DDI types.
The work [Jin e al., 2017] proposes a new multitask dyadic
prediction model to predict adverse drug-drug interactions.
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MLRDA [Chu et al., 2019] develops a multi-task semi-
supervised learning framework which effectively exploits in-
formation that is beneficial for DDI prediction in unlabeled
drug data.

Inspired by the success of applying graph neural net-
works (GNN) in a wide variety of tasks [Jia et al., 2020;
Song et al., 2020; Hao et al., 2020], researchers also tried
to utilize GNN to improve the performance of DDI events
prediction. For example, Decagon [Zitnik ef al., 2018] ap-
plies a relational GNN for predicting side effects of drug
pairs. [Yue et al., 2020] integrates graph embedding meth-
ods for DDI prediction task. In addition, CASTER [Huang et
al., 2020] develops an end-to-end dictionary learning frame-
work for predicting DDI with chemical structures of drugs.
KGNN [Lin er al., 2020] designs an effective framework
for DDI prediction which can capture drug and its poten-
tial neighborhoods in the knowledge graph. Although these
methods have achieved relatively good performance, they do
not consider the drug multimodal data coherence and com-
plementarity together. In addition, knowledge graph can pro-
vide a large amount of structured information among mul-
tiple entities and semantic relations associated with entities.
Knowledge graphs are a powerful tool [Zhao et al., 2020;
Wang et al., 2019b], and some biomedical knowledge bases
have been published in this form. These knowledge graph-
based methods also have been used in structured scenarios of
DDI prediction [Lin er al., 2020]. However, most of these
methods ignore the multimodal data. Moreover, only a few
methods take different drug features as independent data and
do not take cross-modality complementarity into considera-
tion. Compared with these methods, our model uses a newly
designed graph neural network to capture both the topological
information and semantic relations, and explores the cross-
modality complementarity of multimodal data, which differ-
entiates it from the existing methods.

3 Problem Formulation

In this section, we formulate the problem of DDI events pre-
diction that we will tackle. We first present several basic def-
initions which will be used in the problem formulation.

DDI Matrix. Formally, we denote DDI events ) &
(0,y;;)Na*Na as the label matrix for this prediction task,
where N denotes the number of drugs in the DDI events
matrix. y;; € L is a label, where £ = {y1,y2, -+ ,yn,} de-
notes the label set and /V; denotes the types number of events.
For each DDI event, y;; € £ means that the interaction event
Yi; exists between drug d; and drug d;, and y;; = 0 means
that there is no interaction event existing between drug d; and
drug d;.

Drug Knowledge Graph (DKG). We consider a special

type of knowledge graph for DDI events prediction named
drug knowledge graph (DKG), denoted by G = (D, R, T ):

G=A{(d,ra,t)|[deD,rqg e R,t € T, DNT =2}, (1)

where D and T describe a subset of drug entities and a subset
of tail entities (drug related nodes, e.g. targets) respectively,
and R denotes the set of relations between drugs and tail en-
tities.
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Figure 2: Illustration of the proposed MDNN, consisting of two core pathways: the DKG-based pathway and the HF-based pathway. (1)
The DKG-based pathway utilizes the graph neural network to extract the topological structural information and semantic relations from the
constructed drug knowledge graph (DKG). (2) The HF-based pathway mines the inter-modality similarities of each heterogeneous feature
from multiple sources. (3) The multimodal fusion neural layer is applied to effectively assist the joint representation learning of both the
structural information and attribute feature, which explore the cross-modality complementarity of the multimodal data.

Heterogeneous Feature (HF). In this study, heterogeneous
features consist of the target feature, substructure feature and
enzyme feature. It is expressed as follows:

Xy = {X¢, Xy, X} € RV NN 9

where X; € RNexNe X ¢ RNaXNs gpd X, € RNaxNe
stand for the target feature matrix, the substructure feature
matrix and the enzyme feature matrix, respectively. Ny, N
and N, represent the feature number of the targets, the sub-
structures and the enzymes, respectively.

DDI Events Prediction. Given the DDI events matrix ),
drug knowledge graph G and heterogeneous features X, we
aim to predict specific interaction events between drug d; and
drug d;. In other words, we formulate DDI events prediction
as a multi-class classification problem. Our goal is to learn
a prediction function ¢;; = I'(d;,d;|©,)Y, G, X4), where §;;
represents the probability of an event between drug d; and
drug d;, and © denotes the model parameters of function I'.

4 Proposed Method

Overview. The architecture of MDNN is depicted in Fig-
ure 2, which is composed of two main pathways: the DKG-
based pathway and the HF-based pathway. The DKG-based
pathway utilizes the graph neural network to extract the
topological structure information and semantic relations be-
tween drugs on the constructed drug knowledge graph. The
HF-based pathway aims to extract predictive information
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from different modalities to enhance the performance of the
learned models. The multimodal fusion neural layer is ap-
plied to effectively assist the joint representation learning of
both the structural information and the heterogeneous fea-
ture which explore the cross-modality complementarity of the
multimodal data.

In the section, MDNN will be explained in details next,
including the DKG-based pathway in subsection 4.1, the HF-
based pathway in subsection 4.2 and the multimodal neural
fusion layer in subsection 4.3.

4.1 The DKG-based Pathway

We explore the advantage of the abundant information re-
lated to the topological structure and semantic relations in the
DKG, which is beneficial for DDI events prediction.

Drug Knowledge Graph

For each drug in the DDI matrix, we collect the drug related
entities on DrugBank, such as targets, transporters, etc. In or-
der to obtain rich semantic information, we consider the Gen-
eral Function of the tail entities as the relations between the
drug and the tail entities. For example, the drug DB05812 has
a carrier named serum albumin (Uniprot ID: P02768), and
the general function of P02768 is toxic substance binding,
leading to the triple of the DKG representation <DB05812,
toxic substance binding, P02768>>. In this way, we can obtain
the drug knowledge graph triples (drug, relation, tail entity)
with abundant information including the topological structure
and semantic relations.
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The GNN Layer

The GNN layer is proposed to capture drug topological struc-
ture and semantic relations in the drug knowledge graph. The
initial representation matrix of the drug knowledge graph G
is as follows:

0 0 0 0 0
Eg—[e(d)v"'aeg\liv eg‘?)a"'veg\lz e§1)7 o egvz]

drug embedding relation embedding tail embedding

3)
where Ny, N, and Nj represent the number of drugs, rela-
tions and tail entities in the DKG, respectively. ego) e R4,

eSO) € R% and e,EO) € R are served as the initialization of

drug embedding, relation embedding and tail entity embed-
ding, respectively, where d is the dimension of embedding in
drug knowledge graph.

For each drug d;, we uniformly sample a set of a fixed size
as N, (d;) instead of using all the neighbors. It is important
to explicitly incorporate the semantics of relations into drug
representation learning. Thus, we compute the semantics fea-
ture score between drug d; and tail entity ¢,, with relation r;,,
as follow:

(l) )= sum[( (l 1) o e(l 1))W1(P) + bgp)] )

T (dsyrin Tin

(1-1)

where e, ’ is the relation representation between drug d;

and tail entity t,, after (I — 1)** GNN layer. egfl) is the
drug d; representation generated from the previous message-
passing steps, memorizing the messages from its (I-1)-hop
neighbors. W{?) is the trainable weight matrix, b{" is the
bias vector and p is the number of full connection layers, ®
denotes the element-wise product.

Then, we aggregate the messages propagated from the
neighborhood N5 (d;) to refine the embedding of d;. More
formally, we first recursively formulate the neighborhood rep-
resentation of drug d; at [*" layer. We define the neighbor-
hood aggregation function as:

@) e (1-1)
CN.(di) T Z T (d; rin) Etn 5
tn EN(d;)

The final step aggregates the embedding of drug efiljl) and

its neighborhood embedding ef\lf)'( ) into a vector using the

following aggregation function:

Eq, =ef) =o((ef) D @el) 1)) Wa+b2), (6
where Wy € R(9*4 i the trainable weight matrix and o
is the activation function ReLU. @ denotes the concatenate
operation.

Similarly, we can obtain the representation Ey; for drug d;
by propagating information from its neighboring nodes. In
summary, the advantage of the embedding propagation layer
lies in explicitly exploiting the first-order connectivity infor-
mation for drug representations.

4.2 The HF-based Pathway

In the HF-based pathway, we use heterogeneous features to
calculate the drug similarity between DDI events. Each fea-
ture corresponds to a set of descriptors, and thus a drug can
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be represented by a binary feature vector, whose each entry
(1 or 0) indicates the presence or absence of the correspond-
ing descriptor. In order to make the drug node representation
more dense and improve the accuracy of the vector, we use
principal components analysis (PCA) to compress features
and reduce the sparsity. We calculate the pairwise drug—drug
similarity from feature vectors using the Jaccard similarity
measurement.

|diﬂdj| . |diﬂdj|
|d; Uds|  |ds| + |ds] — [di N dj

By using the Jaccard similarity measurement, we can obtain
the target similarity matrix £? € RN¢** substructure sim-
ilarity matrix £° € RN¢** and enzyme similarity matrix
E° € RNaxk where N, stands for the number of drugs, and
the superscript k£ denotes the dimension of heterogeneous fea-
ture embedding.

After obtaining the similarity matrix, we can get the em-
bedding of drug d; as ¢} € E', e; € E°and ey € E°,
respectively.

Finally, to further explore the inter-modal complementar-
ity of the heterogeneous features, we concatenate the three
representation vectors as the final heterogeneous features em-
bedding of d;, which is formulated as:

J(di, d;) = )

E(’i = efj_ © ey, D eg, (8)

Similarly, the embedding E of drug d; can be obtained.

4.3 Multimodal Neural Fusion Layer

Intuitively, the DKG-based and the HF-based pathways pro-
vide complementary information to each other. To achieve
the best utilization of the information of these two pathways,
we consider their coherence and complementarity together in
the so-called multimodal neural fusion layer. After obtain-
ing the embedding F,, and E(;i for drug d;, these embedding

are linked together as the final multimodal embedding Ey, of
drug d;. The equation can be described as:

As such, the embedding of d; contains not only the hetero-
geneous feature information, but also the semantic informa-
tion of the relation and its structural information. Similarly,
the final embedding Ed of drug d; can be obtained.

Then, the multimodal fusion embedding Ed with multiple
fully connected layers is used to predict the DDI events:

Gij = p((Ea, ® Eq, )WY + 657y, (10)

where W3(q) is the trainable weight matrix, and ng) is the bias
vector, g is the number of the full connected layers. p denotes
the activation function softmaz. Finally, we use softmax
function and obtain the final prediction score ;.

For model optimization, we add batch normalization lay-
ers to accelerate the convergence, and add dropout layers to
avoid over-fitting and enhance generalization ability. And we
adopt cross-entropy as the loss function, and empirically train
and optimize the MDNN model. In addition, we use L2 reg-
ularization to prevent over-fitting of our model.
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Methods Acc AUPR AUC Fl1 Pre Rec
Logistic Regression 0.7920 0.8400 0.9960 0.5948 0.7437 0.5236
K-Nearest Neighbour 0.7214 0.7716 0.9813 0.4831 0.7174 0.4081
Random Forest 0.7775 0.8349 0.9956 0.5936 0.7893 0.5161
Deep Neural Network 0.8797 0.9134 0.9963 0.7223 0.8047 0.7027
DeepDDI [Ryu et al., 2018] 0.8371 0.8899 0.9961 0.6848 0.7275 0.6611
DDIMDL [Deng et al., 2020] 0.8852 0.9208 0.9976 0.7585 0.8471 0.7182
MDNN 0.9175 0.9668 0.9984 0.8301 0.8622 0.8202

Table 1: Performance of our model against competitive approaches. The best results are highlighted in boldface.

5 Experiments

In this section, we describe the experimental setups and the
results of the performance evaluation on our proposed model
in DDI events prediction.

5.1 Experimental Setup

Dataset. In order to demonstrate the effectiveness of our
proposed model, we conduct extensive experiments on a real-
world dataset including three parts: (1) DDI Matrix: We ob-
tain the verified DDI events data from DDIMDL !, which
contains 572 drugs and 65 types of events. According to
statistics, a total of 37,264 drug pairs have definite drug-drug
interactions. (2) Drug Knowledge Graph: According to
DDI events, we collect the drug knowledge graph from the
DrugBank? (version 5.1.7). It is a real-world dataset that
contains 572 drugs and 1,614 entities with 76,871 triplets
and 157 relations between drugs and tail nodes. (3) Het-
erogeneous Features: Heterogeneous features released by
DDIMDL [Deng et al., 2020] include 1,162 target features,
583 substructure features and 202 enzyme features.

Baselines. In this study, we compare our model against
the following baselines, including the traditional and the re-
cent state-of-the-art methods. DDIMDL [Deng et al., 2020]
adopts a joint deep neural network framework to learn the
representations of drug—drug pairs and predict DDI events.
DeepDDI [Ryu et al., 2018] develops a deep learning-based
method that reduces the dimension of drug features based on
a principal component analysis. We consider several tradi-
tional classification approaches, i.e., random forest, k-nearest
neighbour, logistic regression and deep neural network.

Evaluation Metrics. We evaluate the prediction per-
formance using several multi-class classification evalua-
tion metrics, including accuracy (Acc), area under the
precision—recall-curve (AUPR), area under the ROC curve
(AUCQ), F1 score (F1), Precision (Pre) and Recall (Rec). We
use micro metrics for AUPR and AUC, while macro metrics
for F1 score, Precision and Recall.

Parameter and Evaluation Settings. The maximum itera-
tion number is set to 100, and we use a batch size of 1,024
and adopt Adam algorithm with a learning rate of 0.001 to
optimize all trainable parameters through a random search in

Uhttps://github.com/YifanDengWHU/DDIMDL
*https://go.drugbank.com/

each iteration. We set the N, = 6, 1 = 1, L2 weight = 1e-8,
p =2, q =3, dimension d = 128 and k = 256.

To comprehensively evaluate our proposed method, we
adopt 5-fold cross validation and randomly divide all DDI
pairs into five subsets in our experiments. The evaluation
score is the average of the output of the five rounds. We use
the early-stopping strategy to prevent over-fitting which au-
tomatically stops the training if no improvement is observed
after 10 epochs.

5.2 Results and Analysis

In this section, we report the performance of our model and
all baselines in Table 1. From the result, we find that our
model achieves the best performance in DDI events predic-
tion on the real-world dataset. Particularly, our proposed
model outperforms DDIMDL by 3.23% on Acc, 4.6% on
AUPR, 0.08% on AUC, 7.16% on F1, 1.51% on Pre and
10.2% on Rec. The better performance of our model is at-
tributed to the fact that our model explores both the drug
topological embedding representations in the drug knowl-
edge graph and the cross-modality embedding representa-
tions of the multimodal data. Moreover, the comparative
study with other state-of-art methods demonstrates that our
model achieves the most stable performance which may be
due to (a) MDNN incorporates a GNN model to exploit the
topological structure information and semantic relations in
the drug knowledge graph; (b) MDNN leverages the cross-
modality complementary information of the multimodal data.
To sum up, it is a preferable achievement in terms of DDI
events prediction.

5.3 Ablation Study

To explore how the DKG-based and the HF-based pathways
improve the performance of the proposed model, we con-
duct the ablation study on the following variants of MDNN.
MDNN;,, is the model variant where we only consider the
topological structures and semantic relations to learn the em-
bedding of drug—drug pairs from the DKG. MDNNy, ¢ is the
model variant where we only explore cross-modality embed-
ding of drug—drug pairs using only the heterogeneous fea-
tures. Moreover, as MDNN,,; only considers multimodal
attribute feature of drug—drug pairs, it performs worse than
MDNN and MDNN 41,4 in all metrics. Figure 3 shows that the
ablation results which verify the contribution of each path-
way in our model, showing that combining the topological
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Figure 3: Results of the ablation experiments with the relative
performances compared with complete MDNN in all the metrics.
MDNN 414 and MDNN},  mean DKG-based and HF-based pathway
embeddings, respectively.

representations in neighborhood with the semantic relations
from the DKG and the heterogeneous features is beneficial
to improving the DDI events prediction performance. It can
be seen that from the results that MDNN outperforms both
variants in all metrics.

5.4 Parameter Sensitivity Analysis

In this work, there are three essential parameters, which are
the size of neighborhood sample N, the number of GNN
layers [ and the dimension of embedding d in DKG. We fixed
other parameters when studying the effect of each of them.
The results are shown in Figure 4.

Effect of neighborhood size. We vary the size of sam-
pled neighbor N to explore the efficacy of MDNN. Figure 4
shows that our model achieves the best performance when N
=6. When N is too small, the model cannot fully incorporate
the structural information, while an large value of N, makes
the model more prone to be misled by noises.

Effect of GNN layers. We investigate the influence of the
GNN layer [ by varying its value from 1 to 3. We observe
that the performance of our model in all the metrics decreases
starting from [ = 1, as a larger [ brings massive noises to the
model. This is also in line with our intuition that using nodes
with too many hops makes little difference when encoding
the topological information of each drug in DKG. The exper-
iment results implies that [ = 1 is often ideal for real cases.

Effect of embedding dimension. In addition, we examine
the influence of embedding dimension d by varying from its
value from 32 to 512. Intuitively, the performance can be
enhanced with a proper d that can encode enough information
of drugs and entities from the DKG. When d is too large,
however, the model will be affected by the over-fitting.

5.5 Multi-task Analysis

We created two different tasks by randomly splitting the drugs
involved into five subsets and using four of them as the train-
ing drug set while the remaining one as the test drug set to
evaluate the effectiveness of our model. For task A, pre-
diction models are constructed on the DDI between train-
ing drugs, and then make predictions for DDI events between
training drugs and test drugs. For task B, it is different from
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Figure 4: Results of MDNN with varying values of GNN layer [,
neighborhood sample N, and initialization dimension d in DKG.

Task Methods Acc AUPR F1 Rec
DNN 0.6239 0.6361 0.2997 0.2840

Task A DeepDDI  0.5774 0.5594 0.3416  0.3890
DDIMDL 0.6415 0.6558 0.4460 0.4319

MDNN 0.6495 0.6661 0.4471 0.4611

DNN 0.4087 0.3776 0.1152 0.1093

Task B DeepDDI  0.3602 0.2781 0.1373  0.1450
DDIMDL 0.4075 0.3635 0.1590 0.1452

MDNN 0.4575 0.4215 0.1697 0.1709

Table 2: Performance comparison of MDNN with other methods on
two different tasks.

task A that MDNN make predictions for DDI events between
test drugs.

It can be learned from Table 2 that the experimental results
of our model in both tasks are better than other methods. This
effectively shows that whether it is between known drugs or
new drugs, the utilization of structural information and het-
erogeneous features improves the prediction accuracy of DDI
events, and provides a strong, reliable support for research on
DDI events prediction.

6 Conclusion

In this paper, we propose a new MDNN model for drug-drug
interaction events prediction. MDNN effectively exploits
both the topological information and the semantic relations
by leveraging a graph neural network on the drug knowledge
graph. Moreover, MDNN also exploits the joint representa-
tion learning of both the structure information and the hetero-
geneous features, which effectively explores the cross-modal
complementarity of the multimodal data. The experimental
results show that MDNN outperforms the classic and state-
of-the-art DDI events prediction models.
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